DEGRADATION OF POLYETHYLENE PLASTIC WASTE BY INDIGENOUS MICROBIAL CONSORTIUM AND FUNGI

Melati Ferianita Fachrul, Astri Rinanti, Tazkiaturrizki Tazkiaturrizki, Salmiati Salmiati, Thalia Sunaryo

Abstract


Aim: The aims of this research is to determine the ability of an indigenous microbial consortium to degrade Low Density Polyethylene plastics. The plastic was cut mechanically into 1 x 1 cm2 pieces because the smaller the size of the plastic, the larger the surface area. The samples are input in an Erlenmeyer flask containing indigenous microbial consortium and fungi (20% v/v) and Stone Mineral Salt solution media (80% v/v). This research lasted 10 days with a pH of 7 controlled and temperature variations of 25, 30, 35°C. As preliminary research, the sensitivity test seeks to demonstrate that the indigenous microbial consortium and fungi are resistant or insensitive to LDPE. The degradation of LDPE plastic was analyzed using gravimetric methods, Fourier Transform Infrared, and a scanning electron microscope. Methodology and results: According to the results of gravimetric and FTIR analysis, the highest removal value was at a temperature variation of 30°C. The gravimetric analysis revealed that the weight loss in LDPE plastic was 0.0082 gr to 0,0074 gr or 9.76 %, while the FTIR analysis revealed that the intensity removal result was 6,27 %. Conclusion, significance, and impact of study: Scanning Electron Microscope (SEM) analysis revealed morphological changes on the surface of LDPE plastic samples, confirming these findings. Several factors influence the changes that occur in this study's LDPE plastic samples.


Keywords


Degradation; LDPE; Microbial consortium; Sensitivity; SEM

Full Text:

PDF

Article Metrics

Abstract views : 0| PDF views : 0

References


Alshehrei, F. 2017. Biodegradation of Synthetic and Natural Plastic by Microorganisms. Journal of Applied & Environmental Microbiology. 5(1): 8-19. Available online at http://pubs.sciepub.com/jaem/5/1/2 ©Science and Education Publishing DOI:10.12691/jaem-5-1-2.

Arkatkar, A., Arutchelvi, J., Sudhakar, M., Bhaduri, S., Uppara, P. V., and Doble, M. 2009. Approaches to Enhance the Biodegradation of Polyolefins. The Open Environmental Engineering Journal. 2: 68-80.

Arutchlevi, J., Sudhakar, M., Arjatkar, A., Doble, M., Bhaduri, S., Uppara P. 2008. Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology. 7: 9-22. 2008 Ene.

Avio, C., G., Gorbi, S., Regoli, F. 2017. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research. 128: 2-11. July 2017. https://doi.org/10.1016/j.marenvres.2016.05.012.

Bhardwaj, H., Gupta, B., H., R., & Tiwari, A. 2012. Microbial population associated with plastic degradation. Scientific Reports, 5, 272-274.

Bunaciu, A., A., Aboul-Enein, H., Y., & Fleschin, S. 2011. Recent Applications of Fourier Transform Infrared Spectrophotometry in Herbal Medicine Analysis. Applied Spectroscopy Reviews. 46(4): 251-260. DOI:https://10.1080/05704928.2011.565532.

Campbell, N., A., Jane, B. Reece & Lawrence G. Mitchell. 2000. Biology. (Terjemahan: Wasmen Manalu). Jakarta: Erlangga.

Caruso, G. 2015. Plastic Degrading Microorganisms as a Tool for Bioremediation of Plastic Contamination in Aquatic Environments. J Pollut Eff Cont. 3:3. http://dx.doi.org/10.4172/2375-4397.1000e112.

CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved standard. 3rd ed. CLSI document M31-A3. Clinical and Laboratory Standards Institute, Wayne, PA, (2008).

Elpawati. 2015. Uji Coba Produksi Mikroorganisme Pengdegradasi (Penghancur) Sampah Plastik. Jurnal Agribisnis. 9(1): 11–22. Juni 2015, ISSN : 1979-0058

Eunike, K., A. Rinanti, R. Ratnaningsih, 2018. Potentialof Indigenous Bacteria to Remove Cyanide with Variations of Contact Time and Temperature”, MATEC Web of Conferences Vol. 197, pp. 1-4.

Fachrul, M., F., and Rinanti A. 2018. Bioremediation of Microplastic Pollutant in Aquatic Ecosystem by Indigenous Bacteria. Prosiding Seminar Nasional Kota Berkelanjutan.

Flemming, H., C. 1998. Relevance of Biofilms for the Biodeterioration of Surfaces of Polymeric Materials. Polym Deg and Stab. 59: 309-315.

Fraga, E., G., 2016. Antimicrobial Susceptibility of Brazilian Clostridium Difficile Strains Determined by Agar Dilution and Disk Diffusion. The Brazilian Journal of Infectious Diseases. 20(5): 476- 481.

Godheja, J., S., K., Shekhar, S., A. Siddiqui, D., R. Modi, 2016. Xenobiotic Compounds Present in Soil and Water: A Review on Remediation Strategies. Journal of Environmental and Analytical Toxicology. 6(5): 1-18.

Gomes, L., C and Mergulhão, F., J. 2017. Research Article SEM Analysis of Surface Impact on Biofilm Antibiotic Treatment. Hindawi Volume 2017, Article ID 2960194, 7 pages https://doi.org/10.1155/2017/2960194.

Gu, J., D. 2003. Microbiological Deterioration and Degradation of Synthetic Polymeric Materials: Recent Research Advances. Int Biodeterior Biodegrad. 52: 69-91.

Gulmine, J.,V., Janissek, P., R., Heise, H., M., & Akcelrud, L. 2000. Polyethylene Characterization by FTIR. Polymer Testing. 21: 557-563.

Hadad, D., Geresh, S., and Sivan, A. 2005. Biodegradation of Polyethylene by the Thermophilic Bacterium Brevibacillus borstelensis. Journal of Applied Microbiology. 98: 1093-1100.

Ibiene, A., A., Stanley, H., O., Immanuel, O., M. 2013. Biodegradation of Polyethylene by Bacillus sp. Indigenous to the Niger Delta Mangrove Swamp. Nig J. Biotech. 26(2013): 68-79. ISSN: 0189 17131.

Kyaw, B., M., R., Champakalakshmi, M., K., Sakharkar, C., S., Lim, K., R., Sakharkar, 2012. Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology. 52(3): 411-419.

Leja, K, and Lewandowicz, G. 2009. Polymer Biodegradation and Biodegradable Polymers-a Review. Polish J. of Environ. Stud. 19(2): 225-226.

Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., and Nava-Saucedo, J.-E. 2008. Polymer biodegradation: mechanisms and estimation techniques - a review. Chemosphere. 73: 429-442.

Luckachan, G., E., and Pillai, C., K., S. 2011. Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 19(3): 637-676. doi:10.1007/s10924-011-0317-1.

Mahalakshmi, V., Siddiq, A., Andrew, S.N. 2012. Analysis of Polyethylene Degrading Potentials of Microorganisms Isolated From Compost Soil. International Journal of Pharmaceutical & Biological Archives. 3(5): 1190-1196.

Maier, R., M. 2015. Bacterial Growth, in Environmental Microbiological. Pepper, I., L., Gerba, C. P., & Gentry, T. J. (Eds.), Massachusetts: Academic Press, pp. 37-56.

Mohan, S., K., and Srivastava, T. 2010. Microbial Deterioration and Degradation of Polymeric Materials. J. Biochem Tech. 2(4): 210-215.

Nanda, S., Sahu, S. S., & Abraham, J. 2010. Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management. 14: 57-60.

Nijs, A., Cartuyvels, R., Mewis, A et al., 2003. Comparison and Evaluation of Osiris and Sirscan 2000 Antimicrobial Susceptibility Systems in the Clinical Microbiology Laboratory. Journal of Clinical Microbiology. 41: 3627-30.

Nugroho, A. 2006. Biodegradasi Sludge Minyak Bumi dalam Skala Mikrokosmos:Simulasi Sederhana Sebagai Kajian Awal Bioremediasi Land Treatment. MAKARA Teknologi. 10(2): 82-86. November 2006. Jakarta: Universitas Trisakti

O’Brine, T., and Thompson, R., C. 2010. Degradation of Plastic Carrier Bags in the Marine Environment. Marine Pollution Bulletin, 60, 2279-2283. http://dx.doi.org/10.1016/j.marpolbul.2010.08.005.

Rajandas, H., S., Parimannan, K., Sathasivam, M., Ravichandran, L., S., Yin. 2012. A Novel FTIR-ATR Spetroscopy Based Tecnique for the Estimation of Low-Density Polyethylene Biodegradation. Polymer Testing. 3(8): 1094-1099.

Sahwan, F., L., Martono, D., H., Wahyono, S., Wisoyodharmo, L., A. 2005. Sistem Pengelolaan Limbah Plastik di Indonesia. J.Tel Ling. PeTL-BPPT. 6 (1): 311-318.

Schmidt, R., Cordovez, V., de Boer, W. et al., 2015. Volatile affairs in microbial interactions. ISME J. 9: 2329-2335 (2015). https://doi.org/10.1038/ismej.2015.42.

Usha, R., Sangeetha, T., & Palaniswamy, M. 2011. Screening of Polyethylene Degrading Microorganisms from Garbage Soil. Libyan Agriculture Research Center Journal International. 2: 200-204.

Verschoor, A., J. 2015. Towards a definition of microplastics: Considerations for the specification of physico-chemical properties. RIVM Letter report 2015-0116. National Institute for Public Health and the Environment. The Netherlands.

Waluyo, T., B., Bayuwati, D., and Widiyatmoko, B. 2009. Karakteristik Rugi Lengkungan dengan Optical Time Domain Reflectometer untuk Penggunaannya sebagai Sensor Pergerakan Tanah. Jurnal Fisika Himpunan Fisika Indonesia. 9: 34-42.

Wei-Min, W., Yang, J., Criddle, C., S. 2017. Microplastics pollution and reduction strategies. Frontiers of Environmental Science & Engineering, February 2017, 11:6.

Yang, J., Yang, Y., Wu, W., M., Zhao, J., and Jiang, L. 2014. Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms. dx.doi.org/10.1021/es504038a. Environ. Sci. Technol. 48: 13776-13784.

Yoon, M., G., Jeon, H., J., and Kim, M., N. 2012. Biodegradation of Polyethylene by a Soil Bacterium and AlkB Cloned Recombinant Cell. J Bioremed Biodegrad. 3:4. Doi: 10.4172/2155- 6199.1000145.




DOI: http://dx.doi.org/10.25105/urbanenvirotech.v5i1.10749

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

width="60"    width="60"    width="60"    width="60"    width="60"        width="60"    width="60"    width="60"    width="60"                                

Copyright of Indonesian Journal of Urban and Environmental Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

     Creative Commons License