FLOWER POLLINATION ALGORITHM UNTUK OPTIMASI PENGENDALI PID PADA PENGENDALIAN KECEPATAN MOTOR INDUKSI

Muhammad Ruswandi Djalal, Muhammad Yusuf Yunus, Andi Imran, Herlambang Setiadi

Abstract

Abstract

The use of Proportional Integral Derivative (PID) controller in induction motors is becoming more and more popular, because of its simple structure. PID controller requires proper parameter setting for optimal performance on the induction motor. The most commonly used method is by trial and error  to determine parameters of the PID controller, but the results obtained are not optimal and incorrect PID controller’s parameters will damage the system. For that reason, in this research it will be shown one of PID parameters tuning method by using Flower Pollination Algorithm (FPA) to optimize and determine the exact parameters of the PID. FPA is a method that is being adapted and applied as a smart algorithm to solve optimization problem. The PID parameters tuning in this study  gives results that the value of kp, ki and kd are  0.4213, 0.2337 and 0.027 respectively. As a comparison, this study has also used Firefly, Cuckoo Search, Particle Swarm, Imperialist Competitive, Ant Colony, Differential Evolution, and Bat method. The FPA method can well tune the PID parameters, so that the resulting overshoot is very small in comparison with the other methods, it is  at 1,019 from the set point.  Compared with other methods, the settling time is also very fast, that is  0.3second.

 

Keywords: PID, FPA, Bee-Colony, Cuckoo, Firefly

 

ABSTRAK

Penggunaan pengendali Proportional Integral Derivative (PID) pada motor induksi menjadi semakin populer, karena strukturnya yang sederhana. Pengendali PID memerlukan pengaturan parameter yang tepat untuk kinerja optimal pada motor induksi. Metode yang paling umum digunakan adalah dengan metode trial and  error untuk menentukan parameter pengendali PID, namun hasil yang didapat tidak optimal dan parameter pengendali PID yang tidak tepat akan merusak sistem. Oleh karena itu, dalam penelitian ini, diperlihatkan  salah satu metode penalaan parameter PID dengan menggunakan metode Flower Pollination Algorithm (FPA) untuk mengoptimalkan dan menentukan parameter PID yang tepat. FPA adalah salah satu metode yang diadaptasi dan diterapkan sebagai algoritma cerdas untuk mengatasi masalah optimasi. Hasil penalaan yang diperoleh adalah nilai kp,   k i, dan kd masing-masing  sebesar  0,4213, 0,2337, dan 0,0274. Sebagai perbandingan, penelitian ini juga menggunakan metode Firefly, Cuckoo Search, Particle Swarm, Imperialist Competitive, Ant Colony, Diferential Evolution, dan metode Bat. Metode FPA dapat menala parameter PID  sehingga overshoot yang dihasilkan sangat kecil dibandingkan dengan metode lainnya yaitu sebesar1,019 terhadap  set point. Waktu settling yang diperoleh juga sangat cepat dibandingkan dengan metode lainnya. yaitu 0,3 detik.

 

Kata kunci: PID, FPA, Bee-Colony, Cuckoo, Firefly

Full Text:

PDF

References

P. M. Meshram dan R. G. Kanojiya. "Tuning of PID Controller Using Ziegler-Nichols Method for Speed Control of DC Motor." dalam IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM -2012), 2012, hlm. 117-122.

J. R. Manepalli dan C. Raja. "Speed Control of Induction Motor by ZN Method and Genetic Algorithm Optimization with PI and PID Controller."

A. G. Abro dan J. M. Saleh. "Multiple-Global-Best Guided Artificial Bee Colony Algorithm for Induction Motor Parameter Estimation," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 22, hlm. 620-636, 2014.

D. H. Kim. "GA–PSO Based Vector Control of Indirect Three Phase Induction Motor." Applied Soft Computing, vol. 7, hlm. 601-611, 2007.

S. V. Ustun dan M. Demirtas. "Modeling and Control of V/f Controlled Induction Motor Using Genetic-ANFIS Algorithm." Energy Conversion and Management, vol. 50, hlm. 786-791, 2009.

D. H. Kim. "Robust Tuning of Embedded Intelligent PID Controller for Induction Motor Using Bacterial Foraging Based Optimization." dalam International Conference on Embedded Software and Systems, 2004, hlm. 137-142.

S. M. Kim dan W. Y. Han. "Induction Motor Servo Drive Using Robust PID-Like Neuro-Fuzzy Controller." Control Engineering Practice, vol. 14, hlm. 481-487, 2006.

E. S. Ali. "Speed Control of Induction Motor Supplied by Wind Turbine via Imperialist Competitive Algorith." Energy, vol. 89, hlm. 593-600, 2015.

K. Premkumar dan B. Manikandan. "Speed Control of Brushless DC Motor Using Bat Algorithm Optimized Adaptive Neuro-Fuzzy Inference System." Applied Soft Computing, vol. 32, hlm. 403-419, 2015.

E. Ali. "Speed Control of DC Series Motor Supplied by Photovoltaic System via Firefly Algorithm." Neural Computing and Applications, vol. 26, hlm.. 1321-1332, 2015.

C. Chengzhi, G. Xiaofeng, dan L. Yang. "Research on Ant Colony Neural Network PID Controller and Application." dalam Eighth ACIS International Conference on, Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD 2007, hlm. 253-258.

L. dos Santos Coelho dan D. L. de Andrade Bernert. "A Modified Ant Colony Optimization Algorithm Based on Differential Evolution for Chaotic Synchronization." Expert Systems with Applications, vol. 37, hlm. 4198-4203, 2010.

M. R. Djalal, D. Ajiatmo, S. Soedibyo, dan I. Robandi. "Frequency Control Pltmh dengan Capacitive Energy Storage Menggunakan Cuckoo Search Algorithm." SENTIA 2015, vol. 7, 2015.

X.-S. Yang. "Flower Pollination Algorithm for Global Optimization." in International Conference on Unconventional Computing and Natural Computation, 2012, hlm. 240-249.

Zulfatman. "Desain Pengendalian Kecepatan Motor Induksi 3 Phase dengan PID Kendaliler." Jurnal Gamma Universitas Muhammadiyah Malang, 2006.

D. Lastomo. "Simulasi Pengendali Sudut Pitch Blade pada Turbin Angin dengan Flower Pollination Algorithm (FPA) untuk Mengoptimalkan Konversi Daya Listrik." Master Thesis ITS, Surabaya, 2016.

Refbacks

  • There are currently no refbacks.