DETERMINING THE MODERATING EFFECT OF PERCEIVED ENVIRONMENTAL UNCERTAINTY - MANAGEMENT ACCOUNTING INFORMATION SYSTEMS RELATIONSHIP IN INDONESIA MANUFACTURING COMPANIES

Kirmizi Ritonga
Faculty of Economics, University of Riau

Abstract: This study examines the effect of perceived environmental uncertainty (PEU) on the design of management accounting information system (MAIS) which is moderated by decentralization. MAIS is design to provide chief executive officers information to make decision, planning, and controlling was defined in terms of the extent to which managers use time information characteristics of broad scope, timeliness, and aggregation in manufacturing firms. The study of 158 chief executive officers that have responsible for an organization, drawn from the manufacturing companies in Jakarta, Tangerang, Bogor, and Kerawang. The questionnaire survey, which was analyzed by using a regression analysis, suggests that PEU have an effect on the aggregated MAS information moderated by decentralization.

Keywords: PEU, MAIS, Manufacturing Companies, Decentralization
1. Introduction

The adoption of a contingency approach to management accounting research has led to the identification of factors, which potentially affect the efficacy of management accounting systems. The concept of this approach is that there is no single management accounting system or design that can be applied effectively to all conditions or organizations; rather, a certain management accounting system is only effective for certain situations or organizations. This approach, in other word, argues that management accounting systems will be effective if the conditions of the organizations are consistent with the systems. This study is more emphasize on application of contingency theory where information capacity or controlling system have to fulfil the requirements or demand of users resulting from the uncertainty faced of organization (Gerloff, 1985; Tushman and Nadler, 1978). A number of studies, which applied contingency theory, have examined the relationship between contextual variables and management accounting systems (MAS) design such as studies performed by Gul (1991), Mia (1993), Gul and Chia (1994) that have provided strong empirical evidence to support the proposition that PEU affects MAS design. The samples are the manufacturing companies in developed countries such as Australia, Hong Kong, and Singapore, which have dissimilar business environment, social, and cultural conditions to that of other developing countries in South East Asia region, such as Indonesia. However, this study was conducted in Indonesia's manufacturing companies that focuses on the effect of PEU on the design of MAS, which is moderated by decentralization. Indeed, the management accounting Literature is replete with studies examining effects of the degree of fit between the situation of PEU and the design of characteristics of MAIS, which depend upon the degree of decentralization.

A number of researchers have discovered that the application of MAIS in manufacturing firms was limited in a narrow scope in the sense that the system has been expected to provide information, which is generally financial, dealing with matters internal to the organization, and ex post or historical. Furthermore, MAIS was implemented in a process of identification, measurement, accumulation, analysis, preparation, interpretation, and communication information to the executives in achieving organization objectives. While the larger scope implementation of information resulted to providing managers for planning, controlling, and decision, which covered in the organization planning system and management control- 1mg system. Not only historical and financial data to be require hut Information resulted of NI AS, however, has to be mi e
toward future orientation. Since 1970s, perceived environmental uncertainty has received attention as a promising explanatory variable in behavioral accounting research. Specifically, accounting researcher have examined the relationship between perceived environmental uncertainty and host of variables including: organizational structure (Gordon and Narayanan, 1984; Chenhall and Morris, 1986; Chia, 1995); management accounting systems design (Chenhall and Morris, 1986; Bouwens and Abernethy, 2000; Chia, 1995: Fisher, 1996), job satisfaction, employee motivation, and performance (Rebele and Michaels, 1990: Anderson and Kida, 1985), and unit business performance (Govindarajan, 1984). Since the business environment has been always in uncertainties, therefore Ferris (1982) argued that the attention of researchers on the effect of perceived environmental uncertainty in some models investigated and the theories pertaining with organization and accounting, at present, is an important field of research to investigate.

Management accounting information system is one of organizational control mechanism, which facilitates control by reporting and creating visibility in the action and performance (Chia, 1995). Implementation of management accounting information systems on manufacturing firms, according to Abernethy and Guthrie (1994) has been affected by perceived environmental uncertainty. MAIS information is highly required in decentralized rather that centralized organizations. As decision-makers attempt to cope with uncertainty, they collect more information but this will lead to increase in information processing capability within the structure. Decentralized structures generally tend to have higher information processing capability. In more certain environment would be lower, and hence organizations will rely more on established rules and procedures and would require less sophisticated MAIS. If these arguments hold, then the need for MAIS should be related to decentralized organizational structures. This study attempts to improve our understanding on perceived environmental uncertainty (PEU), which influence managers' usage of management accounting information system, thereby moderated by decentralization. Interaction between PEU and decentralization on the characteristics of MAIS resulting effective information provided managers to make decision and controlling. The agenda of this study, however, is to investigate implication of management accounting Information systems (MAIS) design on environmental uncertainty of firms moderated by decentralization. MAIS design was defined, in this study, as a perception of users for the application of threinformation characteristics management
accounting system namely broad scope, timeliness, and aggregation. The framework of the study is as shown on figure 1. The term of moderating variable in this study is in the sense that the variable can affect the relationship between perceived environmental uncertainty and management accounting systems. In the condition of high level perceived environmental uncertainty, decision makers require broad scope and timeliness information, particularly information pertaining to future or events that potentially occurred in future in terms of the activities of business organization. However, the information will more useful if authorities delegated broadly to lower level of management in making decision. Furthermore, information provided to managers should have characteristics as accurate, sources and focused, quantified, high frequencies of usage, future orientation, relevance, complete, more aggregated and timeliness (Anthony, 1985; Dermer, 1973; Senn, 1982).

Figure 1: Research Framework

2. Concept And Definition
Environmental uncertainty, according to Gordon and Narayanan (1976) has been identified as an important contextual variable in accounting information system and management information system design. Duncan (1972) defines the environment as the totality of physical and social factors that are taken directly into consideration in the decision-making behavior of individual in the organization. Furthermore, Duncan identified that perceived environmental uncertainty is defined as; (1) the lack of information regarding the environmental factors associated with a given decision-making situation; (2) not knowing the outcome of a specific decision in terms of how much the organization would lose if the decision were incorrect; and (3) inability to assign probabilities with any degree of confidence with regard to how environmental factors are going to affect the
success or failure of the decision unit in performing its function. A literature review indicates that the amount of MAIS information that managers use for decision making is a function of their PEU. Mia (1993) had found that the greater a manager's PEU in a particular situation, the greater is the amount of MAIS information that the manager uses to deal with the situation. Dill (1958), Thompson (1967), Lawrence and Lorsch (1967), and Waterhouse and Tiessen (1978) suggested that environment uncertainty represented a key variable affecting the structure of organizations. Gordon and Narayanan (1984) and Chenhall and Morris (1986) showed that not only does environment affect structure, but also information requirements. Particular finding of Chenhall and Morris (1986) identified a positive relationship between environmental uncertainty and perceived usefulness of information that has wider (broad) scope and is timely. This research will propose that PEU will influence the perceived usefulness of aggregated information.

Broad scope of an information system refers to the dimensions of focus, quantification, and time horizon (Gory and Scott Morton, 1971; Larcker, 1981, Gordon and Narayanan, 1984). A traditional MAIS provides information, which focuses on events within the organization, is quantified in monetary terms, and relates to historical data. The scope of information can be defined, as information that is related to the external environment, is non-financial and future oriented. This study will propose that under condition of high PEUJ, decentralization is needed to be implemented in an organization and the consequence of the situation the availability of MAS broad scope should be used. Therefore, the greater the degree of PEU, the greater the degree decentralization in an organization, the greater the need for a more broad scope of MAS information. Decentralization, which refers to the level of autonomy delegated to the managers, and MAIS design constitutes a significant part of the control package in an organization. PEU will be interacted with decentralization on avail- ability of broad scope MAIS. Since managers faced with high PEU condition will require sophisticated MAIS which is moderated by decentralization, the study proposes the following hypothesis:

H1: Decentralisation significantly moderates the relationship between perceived environmental uncertainty and the usefulness of broad scope of MAS information.

The second characteristic of MAS information is timeliness. This kind of characteristic of information might be defined as a manager's ability to respond quickly to events is likely to be occurred regarding to provision of information on request and the frequency of reporting systematically
collected information (Chenhall and Morris, 1986). Timely information enhances the facility of MAS to report upon the most recent events and to provide rapid feedback on decisions. In uncertain situations, managers are likely to find that they need to respond rapidly to unpredictable change and, consequently, they would find timely information particularly useful. Therefore, in the situation of high uncertainty, then structure decentralization complemented with broad scope information (Gui and Chia, 1994), This study, therefore, examines the interaction between PEU and decentralization on the useful of timeliness MAS information. Then, the study proposes hypothesis is as follows:

H2: Decentralization significantly moderates the relationship between perceived environmental uncertainty and the timeliness of MAS information.

The third characteristic of MAS information is aggregation. MAS may provide information in various forms of aggregation ranging from provision of basic raw, unprocessed data to a variety of aggregations around periods or areas of interest such as responsibility center, functional areas or division unit. The type of aggregation information is referring to summation of in formats consistent with formal decision models such as discounted cash flow analysis, linear programminh in budgetary applications, cost- volume profit analysis, and inventory control models. This study proposes that the relationship between PEU and characteristic aggregation MAS information will be affected by decentralization. It is mean that decentralized managers are required in high degree of environmental uncertainty, then, the consequence is aggregated information should be used to provide formal decision models. Many decision models have been designed to assist management of uncertainty especially in various management accounting books that provide numerous examples of formal models to assist planning and statistical planning. Thus far, the argumentation, which stresses on a fit between decentralization and high degree of PEU, will be required aggregated of MAS information to utilize greater application of forecast and decision models. Therefore, this study will propose the hypothesis:

H3: Decentralization significantly moderates time relationship between perceived environmental uncertainty and the aggregation of MAIS

3. Methodology

Data collection and sampling

A questionnaire survey was used to collect the data and information on relevant aspects of usefulness the characteristic information management accounting systems in Indonesian manufacturing firms and the effect of
Decentralization

Decentralization was measured by using the instrument developed by Chow et al (1999) and Gul and Chia (1994). The Effect of Perceived Environmental Uncertainty on Management Accounting Informations Systems in Indonesian Manufacturing Companies measure contains nine questions regarding the extent to which authority is delegated to the chief executive officers for nine classes of decisions namely, development of new product, firing and hiring of personnel, purchase of capital equipment, selection of large investment, pricing decision, sourcing of input, operating procedures and schedules, distribution of product, and tradeoff within unit.

Reliability and Validity

To examine reliability and validity, the researcher used Statistical Package for Social Science (SPSSPC) package. Reliability of the scale was estimated using Cronbach's alpha for internal consistency of the items. Construct validity for measures was assessed by factor analysis (using varimax rotation). Factor analysis yielded one factor each for perceived environmental uncertainty, management accounting information systems, and decentralization with Eigen values greater than one. Single scales were constructed by averaging a respondent's scores over the question pertaining to PEIJ, decentralization, and each of characteristic of management accounting information system. On the Table 1 the result of measurement of the various variables able for regression analysis, which are subject to factor analysis to confirm their theoretical groupings (construct validity) (Kerlinger, 1964; and Chenhall and Morris, 1986). Varimax rotation is applied to arrive at the final selection.

Table 1. Summary of Result of Factors Analysis and Cronbach Alpha Coefficients for PEU, Decentralization and MAIS Characteristics.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cronbach Alpha</th>
<th>Kaiser MSA</th>
<th>Factor Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Environmental Uncertainty</td>
<td>0.90</td>
<td>0.852</td>
<td>0.492 - 0.870</td>
</tr>
<tr>
<td>Decentralization</td>
<td>0.89</td>
<td>0.906</td>
<td>-0.929 - 0.901</td>
</tr>
<tr>
<td>Broad Scope of MAIS</td>
<td>0.79</td>
<td>0.719</td>
<td>0.431 - 0.837</td>
</tr>
<tr>
<td>Timeliness of MAIS</td>
<td>0.74</td>
<td>0.686</td>
<td>0.699 - 0.807</td>
</tr>
<tr>
<td>Aggregation of MAIS</td>
<td>0.86</td>
<td>0.831</td>
<td>0.537 - 0.888</td>
</tr>
</tbody>
</table>

The Kaiser's MSA values of the variables are all above acceptable level of 0.50 required for the test of appropriateness of the respective set of data for factor analysis (Keiser and Rice, 1974, Chia, 1995) and indicate the construct validity of respective variables. The Cronbach alpha coefficients for the internal reliability of various variables are all at an acceptable level of above 0.60 (Nunnally, 2978).
perceived environmental uncertainty. Strategic business unit managers were approached to participated in the study, as they were the most appropriate personnel experience, and were incharge to the strategic business unit of their organization. Four hundred fifty questionnaires, together with a covering letter and self-addressed prepaid envelope, were distributed to managers in companies randomly selected from Indonesia; Jakarta, Tangerang, Bogor, and Bekasi. Recognizing the sensitive nature of some of the information requested, the covering letter provided a statement ensuring the respondents of anonymity. 125 questionnaires were returned, of which 13 questionnaires were not usable and 159 questionnaires were use in the final analysis. The strategic business unit organizations, at the level of chiefs executive officers as respondents, have to fulfill the criteria for inclusion in the sample were as follows: (1) the company must has at least 200 employees in the organizations: (2) the sales of the company must exceed fifty billions rupiah in a year: and (3) the capital must exceed ten billions rupiah.

Variables Measurement
Perceived environmental uncertainty
Perceived environmental uncertainty is regarding with the ability to predict the condition the environment of organization. It was measured using an eight-item, seven- point Likert-type scale instrument developed by Gui (1991) The eight-item were designed to measure the respondent's perceptions about the predictability and stability in various aspects if their organization's competitors' actions, manufacturing technology, product attributes/ design, market demand, raw material availability, raw material price, government regulation and labor union action.

Management accounting system
Management accounting system is conceptualized as a formal system, which is designed to provide managers with information. Each of the three-characteristic of management accounting system information was measured using a self-scoring instrument which involved rating the extent to which a series of information items would be useful to them in carrying out the overall task of the organization (Bouwens and Abernethy, 2000). The seven-point scale ranged from “not at all useful” to “most useful”. A set of questions was developed for each of three information dimensions taken from several researches, which have been conducted by previous management accounting researchers.
The examination techniques for hypothesis
The examination of hypothesis could be done after collecting the data. Regression model that would be used to examine the hypothesis, the approach which was adopted by Chia (1995) and Govindarajan and Gupta (1985), the results are mathematically reflected as in the equation (1) and (2):

\[Y_1 = a + b_1 X_1 + b_2 X_2 + e \]
\[Y_2 = a + b_2 X_2 + b_3 X_3 + e \]
\[Y_1 = \text{Management accounting information systems; broad scope (I = 1), timeliness, (I = 2), aggregation (I = 3).} \]
\[a = \text{Constant} \]
\[b_1, b_2, b_3 = \text{Regression coefficient} \]
\[X_1 = \text{Perceived environmental uncertainty} \]
\[X_2 = \text{Decentralization} \]
\[X_1, X_2 = \text{Interaction between } X_1 \text{ and } X_2 \]
\[e = \text{Error term} \]

The inclusion of product term in a multiple regression is an acceptable way of testing for interaction (Schoonhoven, 1981). For this study, the interaction approach aims at explaining the variation in management accounting systems from the interaction of the two independent variables in the empirical model. The focus is on the significance and nature of the impact of interaction between the independent variables on the dependent variable, in the equation (2), on the coefficient index of \(b_2 \). If \(b_2 \) is significant, then interaction between PEU and decentralization would affect the characteristics of MAIS. Otherwise, if \(b_2 \) is not significant, then interaction between the variables would not affect the characteristics of MAIS. Therefore, if \(b_2 \) is significant and positive (i.e. \(b_2 > 0 \)) the corresponding incremental \(R^2 \) will so be statistically significant at the same probability level. This means that the introduction of the term \(X_1, X_2 \) in equation (2) adds significantly to the variance explained.

| Table 2: Descriptive Statistic and Matrix Correlation (n = 159) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| No. | Measure | Mean | Std. Dev. | Theoretical Range | Actual Range | 1 | 2 | 3 | 4 |
| 1 | Broad Scope Inf. | 5.06 | 0.366 | 1-7 | 4.81-7 | 0.244** |
| 2 | Timeliness Inf. | 6.06 | 0.621 | 1-7 | 3-7 | 0.522* |
| 3 | Aggregated Inf. | 5.79 | 0.811 | 1-7 | 2.50-7 | 0.457** |
| 4 | PEU | 3.59 | 0.755 | 1-7 | 1.46-5.50 | 0.335* |
| 5 | Decentralization | 4.05 | 1.469 | 1-7 | 1.33-6.89 | 0.129 |

* | * | | | | | | | | | | |
According to Schoonhoven (1981), testing for the existence of contingency versus universalistic interaction effect, of the two independent variables \((X_1\) and \(X_2\)) on the dependent variable \((Y)\), can be performed by examining the partial derivative from the larger regression equation, that is, equation (2). This will determine if a non-monotonic effect or symmetrical effect is present. The partial derivative of equation (2) is shown as equation (3) below:

\[
\frac{\partial Y}{\partial X_1} = b_1 + b_2 X_2 \ldots (3)
\]

This existence of nonmonotonic effect could provide information on where in the range of the contingent variable a change in the direction of slope occurs. The point of inflection for equation (3) will be; \(X_2 = -b_1/b_2\).

4. Analysis And Result

Descriptive Statistics of the Variables

To identify the data that acceptable in this study could be shown on Table 2, which present descriptive statistics for the various variables that have been examined. Table 2 shows that perceived environmental uncertainty (PEU) has a significant relationship with broad scope of MAS information \((r = 0.48, p < 0.01)\) and with aggregation of MAIS \((r = -1.171, p < 0.01)\). However, PEU does not have a relationship with timeliness of MAIS.

Discussion of results

Support for hypothesis 3 is shown in Table 3. This is indicated by the statistically significant \((p < 0.05)\). F-ratio of regression model for usefulness of aggregation MAS information. There is a significant interaction effect between decentralization and perceived environmental uncertainty on aggregation of MAS information as indicated by the interaction coefficient which is statistically significant \((p < 0.05)\) as shown in Table 3. Therefore, the result indicated that decentralization significantly interacts with PEU and positively effect the usage aggregation of MAIS. To test for the presence of non-monotonic relationship on the interaction effect between decentralization and PEU on aggregation of MAS information, partial derivative of equation 3 (for hypothesis 3).

Table 3. Interaction between Perceived Environmental Uncertainty and Decentralization on Management Accounting System.

<p>| Table 3. Interaction between Perceived Environmental Uncertainty and Decentralization on Management Accounting System. |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff.</th>
<th>Value</th>
<th>Std.Dev.</th>
<th>T-stat</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadscope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation (1): (Y = a + b_1 X_1 + b_2 X_2 + e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_1) (PEU)</td>
<td>(b_1)</td>
<td>0.089</td>
<td>0.039</td>
<td>2.268</td>
<td>n.s</td>
</tr>
<tr>
<td>(X_2) (Decentralization)</td>
<td>(b_2)</td>
<td>0.086</td>
<td>0.020</td>
<td>4.408</td>
<td><0.001</td>
</tr>
<tr>
<td>(R^2 = 0.141; \text{adj.R}^2 = 0.130; n = 159; F_{(2,157)} = 4.61; p < 0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothesis 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation (2a): (Y_i = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_1) (PEU)</td>
<td>(b_1)</td>
<td>1.151</td>
<td>0.152</td>
<td>0.993</td>
<td>n.s</td>
</tr>
<tr>
<td>(X_2) (Decentralization)</td>
<td>(b_2)</td>
<td>0.118</td>
<td>0.078</td>
<td>1.518</td>
<td>n.s</td>
</tr>
<tr>
<td>(X_1 X_2) (Interaction)</td>
<td>(b_3)</td>
<td>-0.013</td>
<td>0.031</td>
<td>-0.423</td>
<td>n.s</td>
</tr>
<tr>
<td>(R^2 = 0.142; \text{adj.R}^2 = 0.125; n = 159; F_{(3,156)} = 6.63; p < 0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timeliness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation (1): (Y = a + b_1 X_1 + b_2 X_2 + e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_1) (PEU)</td>
<td>(b_1)</td>
<td>-0.069</td>
<td>0.067</td>
<td>-1.027</td>
<td>n.s</td>
</tr>
<tr>
<td>(X_2) (Decentralization)</td>
<td>(b_2)</td>
<td>0.056</td>
<td>0.033</td>
<td>1.680</td>
<td>n.s</td>
</tr>
<tr>
<td>(R^2 = 0.023; \text{adj.R}^2 = 0.001; n = 159; F_{(2,157)} = 4.61; p > 0.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothesis 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation (2a): (Y_2 = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_1) (PEU)</td>
<td>(b_1)</td>
<td>-0.455</td>
<td>0.258</td>
<td>-1.759</td>
<td>n.s</td>
</tr>
<tr>
<td>(X_2) (Decentralization)</td>
<td>(b_2)</td>
<td>0.141</td>
<td>0.132</td>
<td>-1.069</td>
<td>n.s</td>
</tr>
<tr>
<td>(X_1 X_2) (Interaction)</td>
<td>(b_3)</td>
<td>0.082</td>
<td>0.052</td>
<td>1.545</td>
<td>n.s</td>
</tr>
<tr>
<td>(R^2 = 0.038; \text{adj.R}^2 = 0.020; n = 159; F_{(3,156)} = 2.048; p < 0.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2) explained by interaction term of 0.015 ((R^2) change)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation (1a): (Y = a + b_1 X_1 + b_2 X_2 + e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_1) (PEU)</td>
<td>(b_1)</td>
<td>-0.191</td>
<td>0.087</td>
<td>-2.190</td>
<td>0.030</td>
</tr>
<tr>
<td>(X_2) (Decentralization)</td>
<td>(b_2)</td>
<td>0.026</td>
<td>0.044</td>
<td>0.591</td>
<td>n.s</td>
</tr>
<tr>
<td>(R^2 = 0.031; \text{adj.R}^2 = 0.019; n = 159; F_{(2,157)} = 4.61; p > 0.010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothesis 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation (2a): (Y_3 = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_1) (PEU)</td>
<td>(b_1)</td>
<td>-1.187</td>
<td>0.328</td>
<td>-3.614</td>
<td>0.000</td>
</tr>
<tr>
<td>(X_2) (Decentralization)</td>
<td>(b_2)</td>
<td>-0.41</td>
<td>0.168</td>
<td>-2.885</td>
<td>0.004</td>
</tr>
<tr>
<td>(X_1 X_2) (Interaction)</td>
<td>(b_3)</td>
<td>0.208</td>
<td>0.066</td>
<td>3.140</td>
<td>0.002</td>
</tr>
<tr>
<td>(R^2 = 0.089; \text{adj.R}^2 = 0.072; n = 159; F_{(3,156)} = 3.84; p < 0.050)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2) explained by interaction term of 0.058 ((R^2) change)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2 shows the graph for equation 3 (for hypothesis 3). In the graph, vertical axis represents the relationship between the degree of the perceived environmental uncertainty and aggregated information of management accounting system. The horizontal axis indicates the degree of decentralization. The plotted line of the graph represents the change in aggregated information of MAIS, given a change in the degree of PEU over the degree decentralization.

Figure 2. The effect of Decentralization (X2) on the relationship between Perceived Environment Uncertainty and Aggregated information of MAS

\[\frac{\Delta Y}{\Delta X_1} \]

\[X_1 = \text{Decentralization} \]

\[5.71 \]

\[-1.19 \]

The equation 3 is positive (negative) when X1 has a value above (below) the point of inflection. This means that PEU contributes positively to aggregated in formation of MAS in the range of the X2 values above the point of inflection, since the Slope for equation is positive. However, below that inflection point of the PEU decreases aggregated information of MAS as can be seen from negative slope. The inflection points are well within the observed range of values (i.e. 1.00 to 7.00) and close to the mean value for the degree of decentralization (X2) in the sample. Hence, it is concluded that the degree of PEU has a contingent (non-monotonic) effect on aggregated information of MAIS (Y3) over the range of the degree of decentralization (X2) values. For the hypothesis 3, the equation would be:

\[Y_3 = a + b_1X_1 + b_2X_2 + b_3X_1X_2 + c \]

\[Y_3 = 8.638 + 1.187X_1 + 0.485X_2 + 0.208X_1X_2 + e. \]

If \(\frac{\Delta Y}{\Delta X_1} = b_1 + b_3X_2 \), then \(\frac{\Delta Y}{\Delta X_2} = -1.187X_1 + 0.208X_2. \)

If \(X_2 = 0 \), then \(\frac{\Delta Y}{\Delta X_1} = -1.187 \) (or -1.19), and when \(\frac{\Delta Y}{\Delta X_1} = 0 \), then \(X_2 = \frac{1.187}{0.208} = 5.71 \)
5. Conclusion
The result of the study provides support for hypothesis 3. The main finding of this study is that decentralization significantly moderates the perceived environmental uncertainty to affect aggregation of MAIS. This finding also indicates that the greater the level of decentralization, the greater the effect of PEU has on aggregated information of MAIS. This study adds to the limited knowledge of management accounting research, in particular with reference to the design of MAS, in organizations operating in Indonesia. With respect to business organizations in developing countries, this study is of practical significance because the empirical results provide information about the appropriate design of control subsystems, which these organizations can adopt to enhance the use of management accounting systems in business unit strategy.

References
Chow, Chee W., Shield, Michael., Wu, Anne, 1999. ÒThe important of national culture in the design of and preference for management controls for multinational operationsÓ. Accounting, Organizations, and Society, 24,441-461.

Mia, L., and Goyal, .7991.” Span of control, task interdependence and usefulness of MAS information in not- for profit government organizations “. Financial Accountability and Management, 7 249 - 266.

